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Mathematical formalism.

Problem 1. Prove that, for every odd integer x ∈ Z, there exists some integer y ∈ Z such
that x2 = 8y + 1.

Solution 1. We could do a proof by induction (where we assume that the statement
holds true for x = 2k + 1 and show that it then holds true for x = 2k + 3) but, for no real
reason, we opt instead for a direct proof here.

Write x = 2k + 1 for some k ∈ Z, so that

x2 = 4k2 + 4k + 1 = 4k(k + 1) + 1.

It then suffices to show that k(k + 1) is even (i.e. divisible by 2), but this follows from the
pigeonhole principle: of any n consecutive integers, at least one must divide by n. Said
differently, if k is odd, then k + 1 is even, and so their product is even; if instead k is even
then (k + 1 is odd, and) the product is again even.

For the following two problems it can be simpler to use the following equivalent definition
of injectivity: a function f : A → B is injective if (and only if) it admits a left inverse, i.e.
there exists some function g : B → A such that g ◦ f = idA.

Problem 2. Let c ∕= 0 be a real number. Show that the function f : R → R given by
f(x) = cx is injective.

Solution 2.1 Let x, y ∈ R be such that f(x) = f(y), i.e. cx = cy. But since c ∕= 0, we
can divide by c to obtain that x = y.

Problem 3. Let f, g : R → R be injective. Show that their composition g ◦ f : R → R is
also injective.

1Alternatively, we could show that the function f−1,l : R → R given by x 󰀁→ x/c is a left inverse of f .
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Solution 3.2 Let x, y ∈ R be such that (g ◦ f)(x) = (g ◦ f)(y), i.e. g(f(x)) = g(f(y)).
Then, since g is injective, f(x) = f(y); since f is injective, x = y.

Problem 4. Fix a real number x ∕= 1. Show, by induction, that, for every non-negative
integer n ∈ N, the following equality holds.

1 + x+ x2 + . . .+ xn =
xn+1 − 1

x− 1
.

Solution 4.3 Note that the equality is indeed true for n = 0, so assume that it also
holds true for some n ∈ N. Then

1 + x+ x2 + . . .+ xn + xn+1 =
xn+1 − 1

x− 1
+ xn+1

=
xn+1 − 1

x− 1
+

xn+1(x− 1)

x− 1

=
xn+1 − 1

x− 1
+

xn+2 − xn+1

x− 1

=
xn+2 − 1

x− 1
.

Dedekind cuts.

The following lemma can prove useful in some of these exercises.

Lemma. Any Dedekind cut D is bounded above, that is, there exists some B ∈ Q such
that d < B for all d ∈ D.

Proof. Assume that D is not bounded above, and let q ∈ Q be arbitrary. Then there
exists some d ∈ D such that q < d (otherwise q would be an upper bound for D). By
the downwards-closed property of Dedekind cuts, q ∈ D, whence Q ⊆ D, contradicting the
properness of D.

Problem 5. Let x and y be Dedekind cuts, and define their sum x⊕ y as

x⊕ y = {d+ e | d ∈ x and e ∈ y}.

Prove that x⊕ y is a Dedekind cut.
2Again, using the ‘left-inverse’ definition of injectivity, we could simply show that the composition admits a

left inverse, given exactly by the composition of the left inverse of g and the left inverse of f
3The reason that we ask specifically for a proof by induction is because a direct proof is pretty quick: simply

multiply the left-hand side by (x− 1) and note that every term except −1 and xn+1 cancels.
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Solution 5. First note that x⊕ y is non-empty, since both x and y are non-empty. Then,
since both x and y are bounded above (say, by B and C, respectively), x⊕y is also bounded
above (by B + C), and so in particular cannot contain any rational number greater than
this bound (e.g. B + C + 1). This shows that x⊕ y is a proper subset of Q.

Now let q ∈ Q be such that q < d+e for some d+e ∈ x⊕y. Then, setting ε = d+e−q > 0,
we have that q+ ε = d+ e, whence4 q = d+ e− ε. But e− ε < e and so is an element of y,
and d is an element of x by definition, so their sum is an element of x ⊕ y, i.e. q ∈ x ⊕ y.
This shows that x⊕ y is downwards closed.

Finally, let d+ e ∈ x⊕ y. Then, since x has no maximum, there exists some d′ ∈ x with
d < d′ (and similarly for e′ < e), and so we have d + e < d′ + e′ ∈ x ⊕ y. This shows that
x⊕ y has no maximal element, and we are done.

Problem 6. Define Z = {q ∈ Q | q < 0} (where 0 ∈ Q), which we assume is a Dedekind
cut. Show that, for any Dedekind cut x, we have that x⊕ Z = x.

Solution 6. First, let d+ q ∈ x⊕Z. By definition, q < 0, and so d+ q < d. Then, by the
fact that x is downwards closed, d+ q ∈ x. So x⊕ Z ⊆ x.

Now let d ∈ x. Since x has no maximum5, there exists some d′ ∈ x such that d < d′.
Then 0 > d− d′ ∈ Z, and d = d′ + (d− d′) is an expression for d as a sum of an element of
x (namely d′) and an element of Z (namely d− d′). Thus x ⊆ x⊕ Z, and so x = x⊕ Z.

Problem 7. Define the product x⊙ y of two non-negative Dedekind cuts x and y by

x⊙ y = Z ∪ {d · e | d ∈ x \ Z and e ∈ y \ Z}.

Show that x⊙ y is a Dedekind cut.

Solution 7. Note that if either one of x or y is equal to Z then x · y = Z, which we
already know to be a Dedekind cut, so we can assume that both x and y have at least one
non-negative element.

Since Z is non-empty so too is the union of Z with any other set, and hence x⊙ y is not
empty. Similarly to Problem 5, we can use the fact that both x and y are bounded above
(by B and C, respectively, say): x⊙ y is bounded above by B ·C (since every element of Z
is less than zero). This gives us the properness of x · y.

Now let q ∈ Q be such that q < f for some f ∈ x·y. There are two possible cases: either
f ∈ Z, or f = d · e for some d ∈ x, e ∈ y. In the former case, q ∈ Z, since Z is downwards
closed, and so q ∈ x · y. In the latter case, let m = (d · e)/q ∈ Q, so that q ·m = d · e. Then
q = d · (e/m), where d ∈ x by definition and e/m ∈ y since e/m < e and y is downwards

4In the TDs I split this up as q = (d−ε/2)+(e−ε/2), which is not necessary, but is maybe more aesthetically
pleasing to you. If so, then use it.

5A (sometimes useful) equivalent way of saying the fact that x has no maximum is that, for all d ∈ x, there
exists some ε > 0 (in Q !) such that d+ ε ∈ x.
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closed (N.B. we implicitly use the fact that everything here is non-negative). This shows us
that x · y is downwards closed.

Finally, let f ∈ x·y, and again consider the two cases: either f ∈ Z, or f = d·e for some
d ∈ x, e ∈ y. So in the former case it suffices to find some f ′ ∈ x · y that is non-negative,
since f < 0, but this is easy: take f ′ to be the product of any non-negative element of x
with any non-negative element of y (recalling our assumption at the start of this proof).
In the latter case, by the non-maximal property of x and y, we can find some d′ ∈ x and
e′ ∈ y such that d < d′ and e < e′. Then d · e < d′ · e′ ∈ x · y, and so x⊙ y has no maximum.
Thus x⊙ y is a Dedekind cut.

Problem 8. For a Dedekind cut x, we define its negative ⊖x by

⊖x = {−q | q ∈ Q \ x and q is not a minimum element of Q \ x}.

(a) (Warm up.) Show that ⊖Z = Z.

(b) (Useful technical step.) Show that Q \ x is closed upwards, i.e. if q ∈ Q \ x and q′ ∈ Q
is such that q′ > q then q′ ∈ Q \ x.

(c) Show that ⊖x is indeed a Dedekind cut.

(d) (Another technical step.) Show that, for every r < 0, there exists some d ∈ x such that
d− r ∈ Q \ x.

(e) Show that x⊕ (⊖x) = Z.

Solution 8.

(a) By definition, Q \ Z = {q ∈ Q | q 󰃍 0}, so

⊖Z = {−q | q ∈ Q \ Z and q is not a minimum element of Q \ Z}
= {−q ∈ Q | q 󰃍 0 and q is not a minimum element of Q \ Z}
= {−q ∈ Q | q 󰃍 0} \ {0}
= {−q ∈ Q | q > 0}
= {q ∈ Q | q < 0} = Z.

(b) Let q ∈ Q \ x and q′ ∈ Q be such that q′ > q. If it were the case that q′ /∈ Q \ x (i.e.
q′ ∈ x) then, by the downwards-closed property of x, we would have that q ∈ x, since
q < q′. But this would be a contradiction, so it must be the case that q′ ∈ Q \ x.

(c) We know that ⊖x is not the whole of Q since x is not ∅; we know that ⊖x is not ∅
since Q \ x contains infinitely many elements (because e.g. x is bounded above) and
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so removing at most one element (the minimum, if it exists) will leave us with at least
infinitely many elements, and infinity is more than zero.

Since Q \ x is upwards closed, ⊖x is downwards closed (since it contains exactly6 the
negatives of elements of Q \ x).7

Finally, ⊖x contains no maximal element by definition, since the minimal element of
Q \ x is exactly the element that would become the maximum after reversing the sign
of every element. Thus ⊖x is a Dedekind cut.

(d) 8 Let d + e ∈ x ⊕ (⊖x), so that, in particular, −e ∈ Q \ x, i.e. −e /∈ x. By the same
argument as that in (b) we know that −e must be an upper bound for x, hence, in
particular, d < −e, whence 0 > d+ e ∈ Z. So x⊕ (⊖x) ⊆ Z.

Now let q ∈ Z, so that q < 0. What we would like to do is to write q = d− (d− q) for
some d ∈ x and −(d− q) ∈ ⊖x, but this would require showing that there exists some
such d and that d − q is not a minimal element of Q \ x. If, however, we can do this,
then we are done. With the language of supremums, this would be much easier, but
we must make do with the tools we have, so we proceed as follows.

First of all, note that, if such a d ∈ x exists, then we can always take some d′ ∈ x with
d < d′, whence d− q < d′ − q ∈ Q \ x (by (c)) and q = d′ − (d′ − q). This means that,
if d − q were the minimal element of Q \ x, we wouldn’t have a problem, because we
can instead work with a strictly greater element.

Now, for actually proving that such a d ∈ x does exist, we work by contradiction:
assume that, for all9 d ∈ x, we have that d − q ∈ x. We claim that this implies that
d − nq ∈ x for any n ∈ N, which we can prove by induction.10 Now let p ∈ Q be
arbitrary. If p < d then p ∈ x by the downwards-closed property. If p 󰃍 d then we
write p = ρ/ρ′, d = δ/δ′, and q = κ/κ′, where all numerators and denominators are
integers; all denominators positive; and κ < 0. Then

p− d

−q
=

κ′(ρδ′ − ρ′δ)

−κρ′δ′

6Apart from maybe the minimum element.
7This could maybe be explained slightly better, but I think that this is enough detail for the proof. I hate the

phrase ‘it should be obvious if you think about it’, but if I had to use it just once in these solutions, it would be
here.

8This is by far the most fiddly and unenlightening proof that we have seen so far. Although it is an entirely
valid proof, it does not make for fun reading, and it doesn’t really help us to better understand why the
statement is true. Unfortunately, you will sometimes come across such proofs, so at the very least this serves
as a way of getting your feet wet in the ocean of confusing proofs that surrounds the island of real analysis.

9When taking the converse of a statement you exchange every ∃ with a ∀ (and vice versa) except for the
last ∃, which you negate, e.g ∃a ∀b ∃c ∀d ∃x becomes ∀a ∃b ∀c ∃d∄x.

10The case n = 1 is exactly our contradiction hypothesis. If it is true for some n ∈ N, then p − (n + 1)r =
(p−nr)−r ∈ x, since (p−nr) ∈ x (by our inductive hypothesis) and thus (p−nr)−r ∈ x by our contradiction
hypothesis.
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and so we can define n ∈ N by

n = 1 +
−κρ′δ′(p− d)

−q
>

p− d

−q
.

A tedious calculation shows that p < d− nq, with d− nq ∈ x by the above claim (that
we proved by induction). Since x is closed downwards, this means that, again, p ∈ x,
and so Q ⊆ x, which contradicts the properness of x.
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